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Frequency-Dependent Characteristics of Microstrip

Transmission Lines

MARK K. KRAGE AND GEORGE I. HADDAD

Abstract—A method for determining the frequency-dependent
characteristics of both single and coupled lines in shielded microstrip
is presented. Numerical results are given for a variety of dielectric
configurations and the effects of geometry on the dispersion charac-
teristics are examined in detail. Of particular interest are the charac-
teristics of coupled lines on compensated dielectric structures, i.e.,
structures that are capable of achieving equal even- and odd-mode
phase velocities, and the effects of dispersion on the directivity char-
acteristics of such lines are discussed. In addition, the variation of
impedance as a function of frequency, where the impedance is defined
as the ratio of the power to the square of the longitudinal current, is
presented for representative cases of single and coupled lines.

I. INTRODUCTION

OR sufficiently low frequencies the quasi-TEM
]Ftheory can be employed to obtain the characteris-

tics of microstrip lines and, using this approxima-
tion, extensive design data have been calculated for both
single and coupled lines [1]-[3]. When the wavelength
in a microstrip line becomes comparable to the trans-
verse dimensions of the line the deviation from quasi-
TEM behavior becomes significant and higher order
modes of propagation become possible. Recently, several
authors [4]-[10] have advanced methods for calculating
the frequency-dependent characteristics of microstrip
lines, but only limited numerical results have been pre-
sented for both open and shielded microstrip configura-
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Fig. 1. Shielded microstrip geometry.

tions. Most authors have confined their attention to the
dominant mode characteristics of single lines, but Den-
linger [9] and Gelder [10] have considered the charac-
teristics of a pair of coupled lines and Mittra and Itoh
[7] and Pregla and Schlosser [11] have considered
higher order modes in a shielded structure.

In this paper a method is presented for calculating the
frequency-dependent characteristics of shielded micro-
strip lines, and the effects of geometry on the dispersion
characteristics of single and coupled lines are considered
in detail. Although the analysis will be carried out only
for the configuration of Fig. 1, results will be presented
for the modified configurations of Figs. 2 and 3, as well as
for the geometry of Fig. 1. It was demonstrated in a pre-
vious paper [3] that coupled lines on the modified
geometries can achieve equal even- and odd-mode phase
velocities and are therefore capable of achieving high
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directivities. The effects of dispersion on the directivity
characteristics of these lines will be considered. In addi-
tion, the variation of impedance with frequency, where
the impedance is defined as the ratio of the power to the
square of the'longitudinal current, is presented for
representative cases of both single and coupled lines.

1l. FORMULATION OF THE METHOD

The cross-sectional geometry for the shielded micro-
strip that will be analyzed is shown in Fig. 1. The trans-
mission line consists of a perfectly conducting strip of
zero thickness and finite width residing on top of a di-
electric substrate which, in turn, is enclosed inside a
perfectly conducting box. The structure is divided into
two regions, corresponding to the air and dielectric re-
gions of the structure, and the wave equations for each
region are given by

3

(v + kb {?; =0,

2

l

0, fory <n 1)
fory >k (2)

where an e®! time variation is assumed and k% = w’uc€otr,
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(4=1, 2). Since the transverse-field components can be
determined from the longitudinal-field components by
the relations

(k* + ¥ Esi = — jopo—— + v —— 3)
oy dx
i aE“' aHzt
(k2 + ¥ Hyi = joes—— + v (4)
dy dx
 8H.; O Fss )
(R + YD) Eyi = jopo—— + v )
dx dy
. OFy aH.;
(k& + v Hyi = — joe Y (6)
ox dy

where an e variation is assumed; it is sufficient to con-
sider only the longitudinal (—z) components of the
fields in (1).

The various modes in microstrip can be considered in
terms of even E,-odd H, and odd E.-even H, field con-
figurations; for simplicity, these modes will be referred
to as the even and odd modes, respectively. The domi-
nant mode on a single line is an even mode, while a pair
of coupled lines can support one even and ore odd domi-
nant mode. Using the conditions that E,=E,=0 on the
topwall and ground plane and E,=FE,=0 on the side-
walls, the solutions for E, and H, for the {f,‘;f&‘} modes
can be written in the following form:

_ sinh B1.v (C0sa,x
E.q(x,v) = Ay ————— 7
: 1 ) ; ! sinh B1,k {sin anx} M
— cosh Br,y (sin a,x)
Ha(®,9) = 3 Bin { f (®)
n cosh B,/ Lcos a,x
_. sinh Ba.(s + & — ¥) (cosanx
Ez2(xy y) = Z A2n 2, { . } (9)
' . sinh Bs,.s Sin o,%
— cosh Bs,(s 4+ 5 — 9) (sin ayx
Ha(x,9) = D Bon { } (10)
" cosh B, COS o :
where
;(Zn + l)r/b}
@, =
1 2nun/b
and ,, is constrained by the relation
—a,? + Bl + ¥+ k=0, fori =1,2. (11)

The expansion coefficients for E,; and H,; can be re-
lated by the boundary conditions at the dielectric inter-
face. These boundary conditions are written in terms of
the surface current and surface charge densities on the
strip(s), and are given by the relations

Eoa(w, h) = Eq(x, 1) (12)
Egi(%, h) = Eaa(x, ) (13)
e1Ey1 (%, B) = exEye(x, h) — ps(x) (14)
Ha(x, h) = Ho(x, k) — K.(x) (15)
Hoi(x, h) = Has(z, b) + K.(x) (16)
Hy(x, by = Hyo(x, ) an
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where ps, K,, and K, are the surface charge, transverse
current, and longitudinal current densities, respectively,
on the perfectly conducting strip(s).

Using the relations of (3)—(6), the boundary condi-
tions at ¥ =4 involving the transverse-field components
can be written entirely in terms of the longitudinal-field
components and the surface current densities.

With the following definitions:

Ko (x) = Y, K. sin ap
Ko(x) = Y Ko COS ayx

ps(%) = D Ban COS an®
and the relations of (7)—(10), the equations in E,; and
H,. can be written entirely in terms of the corresponding
Fourier expansions. Term-by-term comparison can then
be used in solving (12)—(17) for Ay, and By,. Since the
algebraic manipulations leading to the desired equations
are similar to those presented by other authors, the in-
termediate steps have been omitted.

One result of interest is the continuity relation

ianKzn + 'YKM + ].w,ssn =0 (18)

where the + refers to the {94} mode. It can be seen
from this relation that K, is +90° out of phase with
K.. and p,» when vy is pure imaginary. In the subsequent
equations, K, is replaced by jK, so that both K., and
K., can be considered real. Upon elimination of p,, the
final expressions give a set of two equations in terms of
A1, Bin, Ken, and K.., which are solved to obtain A1,

and By, in terms of K., and K. as follows:
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|x'l Zw/2, the condition that E,(x, k) =0 for |x’[ <w/2
is equivalent to requiring (9H./dy)(x, h)=0 for |x’|
<w /2. The boundary conditions then become

2 [COS apk
> Aln{ . =0, for|«| Sw/2 (21)
n=0 SN a,%
and
i —  (sin a,x
2 B, tanh ﬁlnth{ } =0, for | x| < w/2
n=0 COS ¥
(22)

where Ay, and By, are given in terms of the longitudinal
and transverse current distributions by (19) and (20).
The longitudinal and transverse current distributions
are absolutely integrable and continuous functions of x
in the range ]x’] <w/2, and therefore admit to expan-
sions in terms of a complete set of basis functions on the
interval |«'| Sw/2. When N, and N, terms are used in
the expansions of the longitudinal and transverse cur-
rent distributions, respectively, the N,-+ N, coefficients
can be evaluated from N, and N.' equations, where
N,/+N,'=N,+ N,, which require the 2z- and x-compo-
nents, respectively, of the electric field to be zero on the
strip. A set of such equations can be generated from (21)
and (22) by requiring these equations to hold at equally
spaced points on the strip. This set of homogeneous
equations has a nontrivial solution if and only if the de-
terminant of the coefficients is zero, and the value or
values of the propagation constant are then determined
by those values of v for which the determinant is zero.
When the determinant is zero, the coefficients of the cur-
rent expansions can be evaluated from any set of
N.+ N.—1 equations by assuming a nonzero value for

jwou(v? + B + B[ [(v2 + £2)Br tanh Bik 4 (v2 + £1)Bsn coth Bos] Ken

i jan'y[ﬁln tanh Blnk + BZn tanh ﬂZnS]an}

Ay, = 19
' { [k12(’)’2 4 k92)B1, coth Bk + k2(v% + k1282 coth ﬁzné‘] (19
q [(v* 4 k2?)B1a tanh Bru + (32 + k1)Bas tanh Bous] + a2y (ke — k1?)?}
an
=+ B[+ BN (k! — k)anyKen + | () (ke? — Ei?)
B — Ban tanh Ba,s[ki2(v? + ke2)B1. coth Bins + ko?(¥* + £1%)Ba, coth ﬂ?ns]}Fxn] (20)
in = °

{[212(v2 + E2%)B1n cOth Binh + Eo2(v? + k1282, coth Bas]

[(v? + B2?)Bun tanh Bink + (v2 + £12)B2s tanh Bons] + an2y(ka? — ki2)?}

The preceding set of relations gives two equations in
four unknowns, and two additional boundary conditions
are necessary for a solution. These conditions are given
by the requirement that the tangential electric fields on
the strip at y=*% are zero, i.e.,

E.(x, k) =0, for l o = w/2
and

E.(x, k) =0, < w/2

where %’ =x for a single strip and x'=x4 (d/24+w/2)
for coupled strips. Since E,(x, #) =0 on the strip for all

for [x’]

one of the coefficients, and any field related quantity
can then be determined.

In some cases this procedure may fail to give a zero
determinant where a root should occur. This situation
arises when the current distribution is insufficient to
produce zeros of the tangential electric fields at the re-
quired points on the strip. In such cases, however, it has
been found that the determinant exhibits a sharp min-
imum in the vicinity of the expected value of the propa-
gation constant and that the current distribution, ob-
tained from solving N,+N,—1 of the equations that



KRAGE AND HADDAD: FREQUENCY-DEPENDENT CHARACTERISTICS

gave the minimum determinant, is usually quite reason-
able.

In another case, a zero-order spurious solution can
occur for a particular choice of N, and N, in the vicinity
of igé!’y/kol 2= (e,+1)/2. In this case, however, deter-
minants of both higher order and lower order give
neither a zero nor a minimum in the vicinity of the spuri-
ous root, and inspection of the determinant elements
that give the spurious solution revealing that several of
the elements may simultaneously be zero and, as a re-
sult, give a trivial solution. It should be noted that Daly
[4] has encountered a similar problem near 2= (¢,+1)/2
in his formulation of the problem, but he attributes this
zero to a zero-order surface-wave mode. His solution for
the resulting field pattern, however, shows violent
oscillations in the longitudinal magnetic field, and this
is indicative of the possibility of a trivial solution. Also
the occurrence of two zero-order modes is an unobserved
phenomenon, and it is concluded that the root near
¥2=(e,-+1)/2 must indeed be a spurious root.

The dominant mode for a single microstrip transmis-
sion line is an even mode, and the longitudinal and
transverse current distributions are then even and odd
functions, respectively, of the x-coordinate. The longi-
tudinal current distributions for this mode can therefore
be expanded in a Legendre polynomial series of the form

K.(x) = Zj:CnPgn(x/a), for l xl Za

K (x)=0, for|x| >a (23)

where a=w/2 and the P,,(x) are the even Legendre
polynomials.

The continuity of I, at the edges of the strip requires
the transverse current to be zero at the strip edges, and
the transverse current distribution then has a sine ex-
pansion of the form

i x
Ku(#) = 3 Dy sin—, for |z| = a
n=1 a
K,(x) =0, for l xl 2 a. (24)

An odd-mode excitation is also possible on a single line
(e.g., the Shafer mode [12]), and for this case the longi-
tudinal and transverse current distributions would be of
the form

K = 3 c,,PQ,HG)

n=1

K.(x) = i D, sin [(2% - 1) (i;_—a—):l (25)
a

n=1

The odd-mode excitation for a single line, however, has
not been considered.

The analysis can be extended to the case of two
coupled microstrip lines through modification of the cur-
rent distributions. In this case there are two zero-order
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modes corresponding to the even- and odd-mode excita-
tions of the lines. In either case the current distributions
on one of the strips is neither symmetric nor antisym-
metric, and the distributions on one of the strips are of
the form

K.(x) = %Cﬂ%(ﬂ/—z:—a)

n=0 a

Ny x—d/2
> D, sin mr(———z—/—),

n=1 a

(26a)

K, (x) =

ford/2 £ x £d/2+ 2¢ (26b)
Kz(x) = Kz(x) =0,
for0= 2 <d/2+2e <2< o (26c)

where d is the separation between the strips, P,(x) are
the Legendre polynomials, ¢ =w/2, and w is the width
of the strip. The even-mode excitation will again cor-
respond to the even E,-odd H, field configuration, while
the odd-mode excitation again corresponds to the odd
E.-even H, field configuration.

Using the preceding current distributions for single
and coupled lines, the phase velocity characteristics were
determined by finding those values of the propagation
constants that give a zero value for the determinant ata
particular {requency. The determinant roots were found
by iteration on v and were located within one part in
10%. In general, this procedure generates the phase-
velocity characteristics of both dominant and higher
order modes but, due to a lack of space, the higher order
mode characteristics will not be considered. A more com-
plete discussion of the results using the method of this
paper, including higher order modes for both open and
shielded microstrip, as well as experimental results for
compensated dielectric couplers, is given in [13]. Also
the low-frequency calculations for large box dimensions
have shown agreement with the data of Bryant and
Weiss [2] to better than 1 percent for the effective di-
electric constants of both single and coupled lines over a
wide range of dimensions. In the case of single lines, the
agreement for ¢, = 10was better than 1 percent for all w/k
in the range 0.2<w/k=<1.5when N.=3 and N.=1 were
used in the current distributions. Similarly, the agree-
ment was within 1 percent for all coupled-line cases con-
sidered when N,=5 and N,=1 were used in the current
distributions. The frequency-dependent characteristics
of these lines are presented in the following section. In
general, the computer time for the calculation of the
propagation constant and impedance at a single fre-
quency is of the order of 15 to 20 s on an IBM 360 com-
puter when V=3 and N,=1.

III. NuMERICAL RESULTS FOR SHIELDED MICROSTRIP

The dispersion characteristics of the dominant mode
have been evaluated for a variety of geometries and
these results are presented in this section. The phase
velocity information is presented in terms of the effec-
tive dielectric constant, which is defined by €,.LQ7?
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= I’Y/ko‘ 2 versus the normalized frequency kko, where

Bo=27/No and Ny is the free-space wavelength. In addi-

tion, the impedance characteristics as a function of fre-

quency are presented for several representative cases.
The impedance is defined by the relation

P, dxdy
e[ B
S (I‘z)2

where P,= (EXH*) -4 is the magnitude of the Poynting
vector in the direction of propagation, s is the cross-
sectional surface enclosed by the metal walls, and I, is
the average value of the longitudinal current, i.e.,
I,=[%K.(x) dx. Now, (EXH*)-$=EH>*—EH/*,
and in region ¢ with dielectric constant ¢, the z-compo-
nent of the Poynting vector becomes

» 1 [< OB aH,i>
2 = Y 1
ko2(eri — 72 dx - dy

(fri aEzc'* + _ 61—],;*) + (_ 6Eu (9sz>
‘N Y -
7 Ox v dy dy dx

(m dE.* aHm-*)]
o G — 9
7 dy 0x

where 7= +/po/ €.
The preceding equation can be simplified somewhat
by noting that

)]

(28)

dE,, 0H,* OE.* 0H.

dx  Jy - dx dy
and

9E.; 0H,* OE.* 0H,

9y oz dy 0w
or that

1 Ve[ | 0E.; |2 0F.; |*

P e - 7—2){ n [ E ‘ 9y ]

(')Hzi 2 aHzi
+ WH l + l

2
ox dy :‘

dE,; 0H,* OE. OH.,*
— . (29
0% dy oy

+ @+ €ri)<

For the bulk of the following results, a Legendre poly-
nomial expansion is used for the longitudinal current
distribution and a sine expansion is used for the trans-
verse current distribution. For single lines, three terms
were used in the longitudinal expansion (N,=3) and
one term was used in the transverse expansion (N,=1).
Higher order expansions with N,=4 and S and N,=2
have also been used for single lines with little apparent
increase in accuracy, i.e., the value of v changes by less
than 0.5 percent and the impedance changes by less
than 0.1 percent.

The results for the dispersion characteristics of single
lines are given in Figs. 4 through 7. In Fig. 4 the disper-
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sion characteristics are shown for three w/k ratios, and
the change in the values of the effective dielectric con-
stants from kko=0 to hko=0.14 are 5.1, 7.4, and 8.5 per-
cent for w/h values of 0.2, 0.6, and 1.0, respectively. It
is therefore seen that wide lines are more dispersive than
narrow lines. Also shown in Fig. 4 are two experimen-
tally determined curves [8], [14] for open microstrip
with w/k=1 and €,~ 10. When the effect of the topwall
and the slightly different dielectric constants and line-
widths are taken into account, the agreement with the
calculated w/A=1.0 curve is very good. In Fig. 5, the
effect of the topwall on the effective dielectric constant
is examined, and it is shown that the topwall effect can
only be ignored when the ratio of the topwall spacing s
to the thickness of the dielectric & is greater than 10.
This result is in agreement with a similar calculation by
Zysman and Varon [8]. The effects of varying the top-
wall spacing and the sidewall spacing are shown in Fig.
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6. The results indicate that reducing the topwall spacing
s increases the dispersion, while reducing the sidewall
spacing b decreases the dispersion. In this case, the
changes in the effective dielectric constant from kke=0
to 0.14 are 8.5 percent for s/h =4 and b/h =20, 12.2 per-
cent for s/k=2 and b/ =20, and 6.5 percent for s/h =4
and b/h=6. The reduction in dispersion for reduced
sidewall spacing can be related to the apparent lack of
dispersion for the odd-mode characteristics of coupled
lines. In the case of coupled lines, the sidewall effect for
the odd mode is due to the electric wall between the
strips, which is required by symmetry considerations. It
is shown that the odd-mode characteristics display a
virtual lack of dispersion for sufficiently small d»/%, and
that the dispersion increases as separation increases.

Finally, in Fig. 7, the dispersion characteristics of two
different dielectrics, €, =10 and ¢,=16, and the charac-
teristics of an overlay dielectric line are compared for a
w/h value of 0.6. The changes in effective dielectric con-
stant from hky=0 to hky=0.14 are 9.7 percent for
€, =16, 7.4 percent for ¢,=10, and 6.2 percent for the
overlay structure. It is therefore seen that, for the same
stripwidth, the higher dielectric constant substrate ex-
hibits more dispersion than lower dielectric-constant
substrates, and that overlay dielectrics can be employed
to further reduce the dispersion. On the basis of lines
having the same low-frequency characteristic impedance
the e,=16, w/h=0.6 curve can be compared with the
e,=10, w/h=1.0 curve, since both lines have approxi-
mately the same zero-frequency 50-Q characteristic im-
pedance, with the result that the higher dielectric-con-
stant substrate still exhibits more dispersion, i.e., 9.7
percent compared to 8.5 percent in the range of iko=0
to hko = 014:

In the case of coupled lines, N,=5 and N,=1 were
used in conjunction with the Legendre-sine current ex-
pansions in most calculations, and a comparison with
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N,=3 and N,=1 showed a change in the solution for 72
of the order of 1 percent, while increasing N, to 2 with
N,=25 showed a change of the order of 0.5 percent.

It should be noted that as N, and N, are increased,
the solutions for ¥2 are generally confined to a very small
range, and that the difference between successive orders
of approximation decreases quite rapidly. From the ob-
served convergence behavior, it is believed that the ac-
curacy for the calculated values should be of the order
of +1 percent.

In Fig. 8, the even- and odd-mode dispersion charac-
teristics of a 10-dB directional coupler in the conven-
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tional microstrip configuration are presented. As the
results show, the odd-mode effective dielectric constant
exhibits very little change, i.e., the change is only 1.9
percent at hky=0.14, while the even-mode characteris-
tics show a change of 11.3 percent at Aky=0.14. The
more highly dispersive nature of the even mode can be
related to the increase in dispersion as w/k increases
since, for small separation, ds/k, the field distribution of
the two strips, will be approximately the same as a single
strip of width 2w+d.

If the frequency-dependent inductance and capaci-
tance of a line are defined from the TEM relations
L=2Zy/v, and C=1/Zw,, the frequency-dependent ca-
pacitive and inductive coupling coefficients are then
given by

Zoe Zo 1 Zo pe
Upe Vpo Z()e Ypo
ky = -
Zoo + Zw 1+ 2o vy
Vpe Vpo ve VUpo
1 — 200 <E)1/2
e \€re
- - (30)
Zoo [ €ro 172
()
Zgo \€re
1 1 1 Z00(619>1I2
ZooVpo Zoelpe Z ro
bo = T S 3D

1 i 1 P4 Z00<ere)1/2
ZOo'vpo ZOovpe Zoe\€&ro

Assuming for the moment that Ze,/Ze is independent of
frequency, the behavior of €, and €,, in Fig. 8 indicates
that %k increases while k¢ decreases with increasing fre-
quency. The quasi-TEM results of a previous paper [3]
indicated that, at zero frequency, the value of &, is al-
ways greater than the value of k¢ for this configuration,
and since the directivity is proportional to 2, — k¢, the
directivity should become worse at higher frequencies.
It will be shown later that, at sufficiently high frequen-
cies, the ratio of Zg/Zo, decreases with increasing fre-
quency, so that the increase in %2z will be greater than
the corresponding decrease in k¢. The conclusion regard-
ing the degradation of directivity with increasing fre-
quency, however, will remain unchanged.

The preceding result further emphasizes the need for
compensated dielectric structures to achieve high direc-
tivity couplers in microstrip. In Figs. 9 through 12, the
dispersion characteristics of some compensated dielec-
tric structures are presented. The method of analysis for
these structures is essentially the same as the previous
analysis and therefore is not presented. In Fig. 9, the
even- and odd-mode dispersion characteristics are given
for a 10-dB overlay structure, i.e., for the configuration
of Fig. 2. In this case, the even- and odd-mode character-
istics exhibit substantially less dispersion than the pre-
vious case, and at kko=0.14 the changes in the effective
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N =1.

dielectric constant from the zero-frequency values are
0.1 percent for the odd mode and 6.9 percent for the
even mode. It is easily seen that the thickness of the
overlay is too large to permit compensation [3] in the
range of frequencies considered, and compensation will
probably occur in the neighborhood of Zky=0.2 or
higher. Since both curves have asymptotes at ¥2=10,
there may exist a large range above the compensation
point for which €..~¢€,, or kBr=kc. The excitation of
higher order modes, however, may render this possibility
impractical.

In Figs. 10 through 12, the dispersion characteristics
of 6-dB, 10-dB, and 20-dB couplers utilizing the Teflon—
alumina dielectric structure in the configuration of Fig.
3 are presented. The changes in the effective dielectric
constants at hkp=0.14 for the 6-dB coupler of Fig. 10
are 0.4 percent for the odd mode and 9.2 percent for the
even one. It is noted that compensation in this case
occurs at a relatively low frequency of hke=0.01. Due
to the relatively small changes in €,, and €, in the vicin-
ity of hk,=0.01, a directional coupler with a midband
frequency of iky=0.01 should behave essentially like a
TEM directional coupler and should exhibit very high
directivities over an octave bandwidth. However, if the
compensation point were changed to a higher frequency,
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say hky=0.1, the change in €,, would be much larger
than in the previous case considered, and the minimum
directivity would be much lower. Still, the directivity
for this configuration should be substantially higher
than for the conventional microstrip configuration.

The dispersion characteristics for the 10-dB Teflon—
alumina coupler are shown in Fig. 11. The changes in
the effective dielectric constants at hko=0.14 are 1 per-
cent for the odd mode and 10.8 percent for the even
mode, and again compensation occurs in the neighbor-
hood of hk,=0.01. It is noted that the dispersion for this
10-dB case is greater than for the 6-dB case, and that
the 10-dB Teflon—alumina curves exhibit more disper-
sion than the 10-dB overlay coupler, but less dispersion
than the conventional 10-dB coupler.

The even- and odd-mode dispersion characteristics
for a 20-dB Teflon—-alumina coupler are presented in Fig.
12. Since the coupling is relatively weak, the coupled
lines should behave somewhat like two single lines. The
changes in the effective dielectric constants at sk, =0.14
are 3.1 percent for the odd mode and 12.9 percent for
the even mode. Note that ¢, is greater than e,, at kko=0
so that compensation was not achieved. It is also noted
that the difference between the relative changes in €.
and €, at hky=0.14 are nearly the same for the 6-dB,
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10-dB, and 20-dB couplers. However, the directivity is
proportional to (kr—kc)/(kr+ke) and, since (kr-+ke)
is less for weaker coupling values, the corresponding
band-edge directivities in an octave bandwidth should
be worse for the weak coupling situations. Assuming
Zoe/Z does not change as a function of frequency, the
minimum directivities of the 6-, 10-, and 20-dB couplers
should be of the order of 41 dB, 30 dB, and 16 dB, re-
spectively, over an octave bandwidth centered about
hke=0.08. (This would correspond to a 4- to 8-GHz
coupler when A=0.025 in.) If the compensation point
is shifted to a lower value of hkq, the minimum directiv-
ity over an octave bandwidth can be substantially in-
creased. For a particular {frequency range, the value of
hko can be reduced by using thinner substrates, but
power handling limitations, losses, and fabrication tech-
niques will, in general, place a lower limit on the sub-
strate thickness.

The impedance as a function of frequency and the
current distribution have been calculated for several
representative cases, and the results for single lines are
given in Figs. 13 through 15. The bulk of the impedance
calculations have been made using a slightly different
longitudinal current distribution approximation given
by

N:  sinh 2nwy’/w

Ky(x) = Co + 3. Cp ————

n=l sinh nr
for coupled strips and

N cosh 4nmx/w
K (%) = Co+ D2, Ca cosh dnmi/w

el cosh 2uxw

for single strips. The reason for this choice of distribu-
tion is primarily aesthetic, and a comparison of the
solutions for the current distributions at kky=0.01 using
Legendre polynomials and sinh functions are shown in
Fig. 13. Also shown is the Maxwell distribution used by
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dielectric constant and characteristic impedance versus normal-
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N,=1.

Denlinger [5]. All the distributions are normalized such
that w’lfi"{f/sz(x) dx=1. It can be seen from these
curves that the polynomial distribution shows more
oscillation than the sinh distribution and that its mag-
nitude is not nearly as large at x=w/2. It is also ob-
served that the sinh distribution and the Maxwell dis-
tribution are quite similar. The sinh distribution, there-
fore, looks more like the expected distribution at low
frequencies, but in terms of the calculated values of ¥
or Z, the choice of distribution makes little apparent
difference. The choice of the basis set for the longitudinal
current distribution, however, does affect the solution
for the transverse current distribution. It is found that
the magnitude of the maximum value of K, is somewhat
smaller when the sinh distribution is employed, and it is
believed that this result is related to the different shapes
of the K,(x) distributions near x = +w/4. In both cases
the magnitude of K, is increasing as a function of fre-
quency and is at least two orders of magnitude less than
the average value of K,(x) at the highest frequency con-
sidered.

In Figs. 14 and 15 the longitudinal current distribu-
tions at hko=0.01 and 0.13, and the frequency depen-
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Fig. 1. (a) Normalized current density versus distance. (b) Ef-
fective dielectric constant and characteristic impedance versus
normf.l)ized frequency. (=10, w/h=1, s/h=4, b/h=20, N,=3,
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dence of the characteristic impedance and the effective
dielectric constant are given for w/k values of 0.5 and 1.
In both cases, the characteristic impedance initially de-
creases and then increases with increasing frequency,
while the effective dielectric constant increases mono-
tonically with increasing frequency. The change in im-
pedance from %ko=0.01 to hko=0.19 is 4.6 percent for
w/h=0.5 and 5.4 percent for w/k=1, while the change
in effective dielectric constant is 8 percent for w/h=0.5,
and 11.8 percent for w/k=1. The impedance, therefore,
changes more slowly than the effective dielectric con-
stant as a function of frequency. The longitudinal cur-
rent distribution also changes slightly as a function of
frequency, and it appears that more current is concen-
trated at the edges of the strip at higher frequencies.
The current distribution curves for values of kky be-
tween 0.01 and 0.13 lie intermediate to the two curves
shown, while the curves for kk, between 0.13 and 0.19
are virtually identical. It is also noted that distribution
curves at kko=0.01 are nearly identical for w/k values
of 0.5 and 1.

The frequency dependence of the impedance has also
been considered by Denlinger [5] and Napoli and
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Hughes [15], but their conclusions are not in agreement
with the preceding results. On the basis of a quasi-TEM
model, Denlinger calculated a microstrip impedance
from the relation Zo=2Z v/ewts/¥, where Zy and eves
are calculated from the quasi-TEM theory. Since ¥ in-
creases monotonically with frequency, this impedance
decreases monotonically with increasing frequency. This
value of impedance, however, is no better than the
quasi-TEM value, since it does not relate the relative
magnitudes of the electric and magnetic fields or the
power to the current except at zero frequency. Napoli
and Hughes, on the other hand, have attempted to mea-
sure the microstrip impedance relative to a TEM refer-
ence line, and they conclude that the impedance de-
creases more rapidly than the effective dielectric con-
stant increases. Since the power and the longitudinal
current should be continuous across the interface be-
tween the TEM line and the microstrip line, the mea-
surements of Napoli and Hughes should be in agreement
with the power—current impedance calculations. How-
ever, an examination of their data reveals that they
have made various assumptions regarding the phases of
the reflected signals. When these assumptions are re-
moved, the data of Napoli and Hughes give a range of
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possible impedance values, and the calculated values of
impedance then lie well within the predicted range. It
should also be noted in this regard that standing-wave
measurements in a TEM reference line of a 1-in long
50-Q (zero-frequency) microstrip line (alumina sub-
strate) terminated in a 50-Q load show that the VSWR
increases slowly with frequency, with a maximum
VSWR of 1.2 up to 15 GHz [16]. The maximum VSWR
for the impedance variation of Fig. 15(b), excluding mis-
match due to the connectors and the load, would be of
the order of 1.06. The impedance calculations, therefore,
are in good agreement with the experimental data.
The longitudinal current distribution, impedance, and
effective dielectric constant have also been calculated
for a pair of coupled lines, and the corresponding even-
and odd-mode characteristics are given in Figs. 16 and
17, respectively. The changes in the impedance and the
effective dielectric constant at hky=0.12 from their
zero-frequency values are 5.8 percent and 11.3 percent
for the even mode and 0 percent and 1.7 percent for the
odd mode, respectively. The values of k1 and k¢ are
k1 =0.29 and k¢=0.20 at hky=0.01, and £, =0.333 and
kc=0.21 at hky=0.12, so that (kL —ke)/(kr+kc) equals
0.184 at hko=0.01 and 0.226 at hko=0.12, respectively.
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The corresponding directional couplers with midband
frequencies of #ky=0.01 and 0.12 would then have mid-
band directivities of the order of 7 dB and 5.5 dB, re-
spectively. The current distribution for the even mode
is shown for two values of k&, As was found for the
single strip, the current tends to concentrate at the
outer edges of the strips at the higher frequencies. The
odd-mode current distributions in the frequency range
considered were all nearly identical, but in this case the
current shifted slightly to the inner edges of the strip.

IV. CoNcLUSIONS

A method has been presented for determining the fre-
quency-dependent characteristics of the dominant mode
in microstrip transmission lines. The method can also be
extended to calculate the characteristics of higher order
modes, and was used to calculate the divergence or cut-
off frequencies of several modes. The bulk of the nu-
merical results were presented for microstrip enclosed in
a metal box, and the effects of the box size on the charac-
teristics of the line were examined. It was found that re-
ducing the topwall to ground-plane spacing increased
the dispersion as a function of frequency, while reducing
the spacing between the sidewalls reduced the disper-
sion. This sidewall effect was correlated to the virtual
lack of dispersion for the odd-mode characteristics of
coupled lines, while the increase in dispersion with in-
creasing stripwidth was related to the highly dispersive
characteristics of the even mode for coupled lines. The
even- and odd-mode effective dielectric constants were
calculated for several of the compensated structures,
and it was shown that the even- and odd-mode phase
velocities can be equalized for a particular frequency.
The minimum obtainable directivity over an octave
bandwidth was shown to decrease as the compensation
frequency increases.

The frequency dependence of the impedance for single
and coupled lines was also considered, and it was shown
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that the percent change in impedance from its zero-fre-
quency value is in general less than the corresponding
percent change in the effective dielectric constant. Also
the results show that the impedance increases as a func-
tion of frequency.
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