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Frequency-Dependent Characteristics of

Transmission Lines

Microstrip

MARK K. KRAGE AND GEORGE I. HADDAD

Abstract—A method for determining the frequency-dependent
characteristics of both single and coupled liies in shielded microstrip
is presented. Numerical results are given for a variety of dielectric
configurations and the effects of geometry on the dispersion charac-
teristics are examined in detail. Of particular interest are the charac-

teristics of coupled lines on compensated dielectric structures, i.e.,

structures that are capable of achieving equal even- and odd-mode

phase velocities, and the effects of dispersion on the directivity char.

acteristics of such lines are discussed. In addition, the variation of

impedance as a function of frequency, where the impedance is defined
as the ratio of the power to the square of the longitudinal current, is
presented for representative cases of single and coupled lines.

I. INTRODUCTION

F

OR sufficiently low frequencies the quasi-TEM

theory can be employed to obtain the characteris-

tics of microstrip lines and, using this approxima-

tion, extensive design data have been calculated for both

single and coupled lines [1 ]– [3 ]. When the wavelength

in a microstrip line becomes comparable to the trans-

verse dimensions of the line the deviation from quasi-

TEM behavior becomes significant and higher order

modes of propagation become possible. Recently, several

authors [4 ]– [10 ] have advanced methods for calculating

the frequency-dependent characteristics of microstrip

lines, but only limited numerical results have been pre-

sented for both open and shielded microstrip configura-
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Fig. 1. Shielded microstrip geometry.

tions. Most authors have confined their attention to the

dominant mode characteristics of single lines, but Den-

linger [9] and Gelder [10] have considered the charac-

teristics of a pair of coupled lines and Mittra and Itoh

[7] and Pregla and Schlosser [11] have considered

higher order modes in a shielded structure.

In this paper a method is presented for calculating the

frequency-dependent characteristics of shielded micro-

strip lines, and the effects of geometry on the dispersion

characteristics of single and coupled lines are considered

in detail. Although the analysis will be carried out only

for the configuration of Fig. 1, results will be presented

for the modified configurations of Figs. 2 and 3, as well as

for the geometry of Fig. 1. It was demonstrated in a pre-

vious paper [3] that coupled lines on the modified

geometries can achieve equal even- and odd-mode phase

velocities and are therefore capable of achieving high
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Fig. 3. Composite-substrate-shieldedmicrostrip.

directivities. The effects of dispersion on the directivity

characteristics of these lines will reconsidered. Inaddi-

tion, tile variation of impedance with frequency, where

the impedance isdefined asthe ratio of the power tothe

square of the longitudinal current, is presented for

representative cases of both single and coupled lines.

(i= 1, 2). Since the transverse-field components can be

determined from the longitudinal-field components by

the relations

8H,, dllzi
(k,’ + ‘y ’) E., = – jq.!, --- + ‘y --; (3)

where an e~” variation is assumed; it is sufficient to con-

sider only the longitudinal ( — z) components of the

fields in (l).

The various modes in microstrip can be considered in

terms of even Es-odd H, and odd E.-even .FI. field con-

figurations; for simplicity, these modes will be referred

to as the even and odd modes, respectively. The domi-

nant mode on a single line is an even mode, while a pair

of coupled lines can support one even and one odd domi-

nant mode. Using the conditions that E.= E.= O on the

topwall and ground plane and E,= E, = O on the side-

walls, the solutions for E, and II, for the ~~j$ } modes

can be written in the following form:

{}

sinh I?l.y CO$anx
E,,(x: y) = ~ ~1. ‘—

n sinh @l.h sin anx
(7)

{]

cosh L?lay sin ax’
H,l(x, y) = ~ ‘lm X= cos c&X (8)

n

11. F~ORM(JLATION OF THE ill ETHOD

The cross-sectional geometry for the shielded micro-

strip that will be analyzed is shown in Fig. 1. The trans-

mission line consists of a perfectly conducting strip of

zero thickness and finite width residing on top of a di-

electric substrate which, in turn, is enclosed inside a

perfectly conducting box. The structure is divided into

two regions, corresponding to the air and dielectric re-

gions of the structure, and the wave equations for each

region are given by

,{ 1(V2 + k,’) : = o, fory<h (1)

32

{1
(V2 + k,’) _ = O, fory>h (2)

H~

{}

sinh /32. (s + h — y) cos anx
E,2(x, y) = ~ ~2.— — (9)

* sinh ~2,,s sin a%x

{}

cosh 6?. (s + k — y) sin a.x
H.’(x, y) = ~ Z2. — (lo)

n cosh Bzns Cos O!nx

where

((274 + l)7r/b)

a“= i 2mrib ?

and /3,n is constrained hy the relation

—a.2 + ,8in2 + -r’ + kiz = O, fori = 1,2. (11)

The expansion coefficients for E,i and H,i can be re-

lated by the boundary conditions at the dielectric inter-

face. These boundary conditions are written in terms of

the surface current and surface charge densities on the

strip (s), and are given by the relations

E.,(z, h) = I&(x, h) (12)

E.,(x, h) = E.,(x, h) (13)

CIEV1(X, h) = qEv2(x, h) — P.(z) (14)

Ha(X, h) = Hz2(x, k) – ~z(x) (15)

Hal(x, h) = HZ2(X, h) + K.(x) (16)

where an efit time variation is assumed and ki2 = 021.JOCOGi Hul(x, h) = HJ2(x, h) (17)



680 lEEETRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, OCTOBER 1972

where p,, K=, and K. are the surface charge, transverse

current, and longitudinal current densities, respectively,

on the perfectly conducting strip(s).

Using the relations of (3)–(6), the boundary condi-

tions at y = h involving the transverse-field components

can be written entirely in terms of the longitudinal-field

components and the surface current densities.

With the following definitions:

K=(%) = ~ Z=. sin a%x
n

K,(x) = ~ z.. Cos anx
n

%(%) = x p.. Cos anx
n

and the relations of (7)–(10), the equations in E.~ and

Il., can be written entirely in terms of the corresponding

Fourier expansions. Term-by-term comparison can then

be used in solving (1 2)–(17) for Aln and Bin. Since the

algebraic manipulations leading to the desired equations

are similar to those presented by other authors, the in-

termediate steps have been omitted.

One result of interest is the continuity relation

* a.~$. + yl?,. + jap,. = O (18)

where the + refers to the ~ ~~~ ] mode. It can be seen

from this relation that K. is f 90° out of phase with

~,a and p.. when y is pure imaginary. In the subsequent

equations, Kz is replaced by ~K. so that both 7YZ. and

KZ. can be considered real. Upon elimination of p,., the

final expressions give a set of two equations in terms of

Zln, Zln, Zxm, and X,., which are solved to obtain X1.

and %l. in terms of F=. and K,. as follows:

I x’! ~w/2, the condition that E,(x, h) = O for I x’I <w/2

is equivalent to requiring (c311e/dy) (x, ii) = O for Ix’\

<w/2. The boundary conditions then become

g Z,n
{}

Cos CYnx
= o, for I x’ I ~ w/2 (21)

?l=o sin a%x

and

where XIW and 31. are given in terms of the longitudinal

and transverse current distributions by (19) and (20).

The longitudinal and transverse current distributions

are absolutely integrable and continuous functions of z

in the range I x’ I <w/2, and therefore admit to expan-

sions in terms of a complete set of basis functions on the

interval I x’ I S w/2. When Ns and Nz terms are used in

the expansions of the longitudinal and transverse cur-

rent distributions, respectively, the N,+ N, coefficients

can be evaluated from N.’ and N%’ equations, where

N,’ + N,t = N=+ N., which require the z- and x-compo-

nents, respectively, of the electric field to be zero on the

strip. A set of such equations can be generated from (21)

and (22) by requiring these equations to hold at equally

spaced points on the strip. This set of homogeneous

equations has a nontrivial solution if and only if the de-

terminant of the coefficients is zero, and the value or

values of the propagation constant are then determined

by those values of -Y for which the determinant is zero,

When the determinant is zero, the coefficients of the cur-

rent expansions can be evaluated from any set of

N, +Nz – 1 equations by assuming a nonzero value for

The preceding set of relations gives two equations in

four unknowns, and two additional boundary conditions

are necessary for a solution. These conditions are given

by the requirement that the tangential electric fields on

the strip at y = h are zero, i.e.,

E.(*, h) = O, for I x’ I ~ w/2

and

E.(*, h) = o, for I z’ I < w/2

where x’= x for a single strip and x’= x ~ (d/2 +w/2)

for coupled strips. Since E.(x, h)= O on the strip for all

one of the coefficients, and any field related quantity

can then be determined.

In some cases this procedure may fail to give a zero

determinant where a root should occur. This situation

arises when the current distribution is insufficient to

produce zeros of the tangential electric fields at the re-

quired points on the strip. In such cases, however, it has

been found that the determinant exhibits a sharp min-

imum in the vicinity of the expected value of the propa-

gation constant and that the current distribution, ob-

tained f~~~ sojving N.+ N. – 1 of the equations that
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gave the minimum determinant, is usually quite reason-

able.

In another case, a zero-order spurious solution can

occur for a particular choice of N. and N, in the vicinity

of 7zQI ~/kOl z = (c, + 1)/2. In this case, however, deter-

minant of both higher order and lower order give

neither a zero nor a minimum in the vicinity of the spuri-

ous root, and inspection of the determinant elements

that give the spurious solution revealing that several of

the elements may simultaneously be zero and, as a re-

sult, give a trivial solution. It should be noted that Daly

[4] has encountered a similar problem near 72 = (e,+l)/2

in his fc~rmulation of the problem, but he attributes this

zero to a zero-order surface-wave mode, His solution for

the resulting field pattern, however, shows violent

oscillations in the longitudinal magnetic field, and this

is indicative of the possibility of a trivial solution. Also

the occurrence of two zero-order modes is an unobserved

phenomenon, and it is concluded that the root near

72= (e, -+ 1)/2 must indeed be a spurious root.

The dominant mode for a single microstrip transmis-

sion line is an even mode, and the longitudinal and

transverse current distributions are then even and odd

functions, respectively, of the x-coordinate. The longi-

tudinal current distributions for this mode can therefore

be expanded in a Legendre polynomial series of the form

K=(z) = ~ CnP2n(x/a), forlx[~a

K%(%) = o, forlzl>a (23)

where a = w/2 and the Pz~(x) are the even Legendre

polynomials.

The continuity of H. at the edges of the strip requires

the transverse current to be zero at the strip edges, and

the transverse current distribution then has a sine ex-

pansion of the form

K.(x) = o, for I*I >a. (24)

An odd-mode excitation is also possible on a single line

(e.g., the Shafer mode [12 ]), and for this case the longi-

tudinal and transverse current distributions would be of

the form
m

()
K,(x) = ~ CmPZ..I :

n=l a

[
K.(z) = ~ D. sin (2n – 1)

(x + a)

12a ‘
(25)

n= 1

The odd-mode excitation for a single line, however, has

not been considered.

The analysis can be extended to the case of two

coupledl microstrip lines through modification of the cur-

rent distributions. In this case there are two zero-order

modes corresponding to the even- and odd-mode excita-

tions of the lines. In either case the current distributions

on one of the strips is neither symmetric nor antisym-

metric, and the distributions on one of the strips are of

the form

x–d/2–a
K.(x) = ~ CnPn

n=o ( a )

N=

K.(x) = ~ D. sin rm
()

X — d/2

n= 1 2a ‘

(26a)

for d/2 S ~ S d/2 + 2a (26b)

for 0Sx<d/2+2a <x< @ (26c)

where d is the separation between the strips, P.(x) are

the Legendre polynomials, a = w/2, and w is the width

of the strip. The even-mode excitation will again cor-

respond to the even E.-odd H. field configuration, while

the odd-mode excitation again corresponds to the odd

E.-even H, field configuration.

Using the preceding current distributions for single

and coupled lines, the phase velocity characteristics were

determined by finding those values of the propagation

constants that give a zero value for the determinant at a

particular frequency. The determinant roots were found

by iteration on 7 and were located within one part in

106. In general, this procedure generates the phase-

velocity characteristics of both dominant and higher

order modes but, due to a lack of space, the higher order

mode characteristics will not be considered. A more com-

plete discussion of the results using the method of this

paper, including higher order modes for both open and

shielded microstrip, as well as experimental results for

compensated dielectric couplers, is given in [13]. Also

the low-frequency calculations for large box dimensions

have shown agreement with the data of Bryant and

Weiss [2] to better than 1 percent for the effective di-

electric constants of both single and coupled lines over a

wide range of dimensions. In the case of single lines, the

agreement for e,= 10 was better than 1 percent for all w/h

in the range 0.2 S w/h S 1.5 when N,= 3 and N,= 1 were

used in the current distributions. Similarly, the agree-

ment was within 1 percent for all coupled-line cases con-

sidered when N,= 5 and N.= 1 were used in the current

distributions. The frequency-dependent characteristics

of these lines are presented in the following section. In

general, the computer time for the calculation of the

propagation constant and impedance at a single fre-

quency is of the order of 15 to 20 s on an IBM 360 com-

puter when N.= 3 and Ns = 1.

II 1. NUMERICAL RESULTS FOR SHIELDED MICROSTRIP

The dispersion characteristics of the dominant mode

have been evaluated for a variety of geometries and

these results are presented in this section. The phase

velocity information is presented in terms of the effec-

tive dielectric constant, which is delined by e,.~&&72
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= l-i/kol 2, versus the normalized frequency W,, where

k,= 27r/hO and ~, is the free-space wavelength. In addi-

tion, the impedance characteristics as a function of fre-

quency are presented for several representative cases.

The impedance is defined by the relation

s P. dxdy
ZCI=2

s (1.)2
(27)

where P.= (E X H*). 2 is the magnitude of the Poynting

vector in the direction of propagation, s is the cross-

sectional surface enclosed by the metal walls, and lZ is

the average value of the longitudinal current, i.e.,

1,= j- QK#(x) dx. Now, (E XH*) ..i = ECHU* –EUH.*,

and in region i with dielectric constant e.i the z-compo-

nent of the Poynting vector becomes

1

[(

8E8i 8Hzi
Pgi =

koz(e,; – ~’)
,x .+~y‘7——

)

“(

~ri dEzi* dHzd*

)(

dE.~ 8Hz~
—T+~_ + q—–

ay ay
v—

7 ax )

“(

q.; aEzi* aH,i*
——–T———— )1 (28)

T ay ax

where q = <~o/eo.

The preceding equation can be simplified somewhat

by noting that

dEg, dHa~* aE,i* aH,~
—— =

ax ay ax ay

and

aEzi aHz%* aE=%* aH=i
—— .—. —

ay ax ay ax

or that

1-

{ [1
aE.i 2 ~ aE8i 2

Pzi = ‘——— F —
koz(cri – 72) q 8X ay–11

[18Hzi 2 8Hzi 2
+?17~+—

ay II
(aEzi aH.i* aEz% aHzi*

+(72+%) ~—–——
)}

. (29)
ay ay ax

For the bulk of the following results, a Legendre poly-

nomial expansion is used for the longitudinal current

distribution and a sine expansion is used for the trans-

verse current distribution. For single lines, three terms

were used in the longitudinal expansion (N. = 3) and

one term was used in the transverse expansion (NZ = 1).

Higher order expansions with N.= 4 and 5 and NZ = 2

have also been used for single lines with little apparent

increase in accuracy, i.e., the value of y changes by less

than 0.5 percent and the impedance changes by less

than 0.1 percent.

The results for the dispersion characteristics of single

lines are given in Figs. 4 through 7. In Fig. 4 the disper-

72,

. I ~ . . . Experimental cuwE BY zYsMAN AND

t
V&RONe FOR OPEN MICROSTR!P WITH w[ti=
096, h=00501NCH, Cr=9?

60

r

. . . EXPERIMENTAL CURVE BY TROUWTON14

FOR OPEN MICROSTRIP 50-s2 LINE ON
O 025-INCH ALUMINA (<,=9 91

0 002 004 006 006 010 012 014 016

NORMALIZED FREQUENCY hko

Fig. 4. Effective dielectric constant versus normalized frequency.
(c, =1O, b/h=20, s/h=4, iVz=3, Nz=l,)

6

6 —

4 —

2 —

0 I I I I
-0 2 4 6 8 10

slh

Fig. 5. Effective dielectric constant versus s/k. (e, = 10, w/h= 1,
b\lz=20, &= O.01, N,=3, Nz=l).

sion characteristics are shown for three w/h ratios, and

the change in the values of the effective dielectric con-

stants from hko= O to hko= 0.14 are 5.1, 7.4, and 8.5 per-

cent for w/k values of 0.2, 0.6, and 1.0, respectively. It

is therefore seen that wide lines are more dispersive than

narrow lines. Also shown in Fig. 4 are two experimen-

tal y determined curves [8], [14] for open microstrip

with w/h = 1 and ~,= 10. When the effect of the topwall

and the slightly different dielectric constants and line-

widths are taken into account, the agreement with the

calculated w/h = 1.0 curve is very good. In Fig. 5, the

effect of the topwall on the effective dielectric constant

is examined, and it is shown that the topwall effect can

only be ignored when the ratio of the topwall spacing s

to the thickness of the dielectric h is greater than 10.

This result is in agreement with a similar calculation by

Zysman and Varon [8]. The effects of varying the top-

wall spacing and the sidewall spacing are shown in Fig.
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1- [ I I I 1 I
0 002 004 006 008 010 012 014

NORMALIZED FREQUENCY hkO

Fig. 6. Effective dielectric constant versus normalized frequency.
(c, =1O, W/h=~, Ns=3, Nz=l,)

6. The results indicate that reducing the topwall spacing

s increases the dispersion, while reducing the sidewall

spacing b decreases the dispersion, In this case, the

changes in the effective dielectric constant from hko = O

to 0.14 are 8.5 percent for s/h=4 and 13/h= 20, 12.2 per-

cent for s/h = 2 and b/h= 20, and 6.5 percent for s/h= 4

and b/h = 6. The reduction in dispersion for reduced

sidewall spacing can be related to the apparent lack of

dispersion for the odd-mode characteristics of coupled

lines. I n the case of coupled lines, the sidewall effect for

the odd mode is due to the electric wall between the

strips, which is required by symmetry considerations. It

is shown that the odd-mode characteristics display a

virtual lack of dispersion for sufficiently small dz/h, and

that the dispersion increases as separation increases.

Finally, in Fig. 7, the dispersion characteristics of two

different dielectrics, e,= 10 and e,= 16, and the charac-

teristics of an overlay dielectric line are compared for a

w/h value of 0.6. The changes in effective dielectric con-

stant from hko = O to hko = 0.14 are 9.7 percent for

e,= 16, 7.4 percent for c,= 10, and 6.2 percent for the

overlay structure. It is therefore seen that, for the same

stripwidth, the higher dielectric constant substrate ex-

hibits more dispersion than lower dielectric-constant

substrates, and that overlay dielectrics can be employed

to further reduce the dispersion. On the basis of lines

having the same low-frequency characteristic impedance

the e,== 16, w/h = 0.6 curve can be compared with the

e, = 10, w/h = 1.0 curve, since both lines have approxi-

mately the same zero-frequency 50-i2 characteristic im-

pedance, with the result that the higher dielectric-con-

stant substrate still exhibits more dispersion, i.e., 9.7

percemt compared to 8.5 percent in the range of hko = O

to hkO==O.14.

In the case of coupled lines, N,= 5 and N.= 1 were

used in conjunction with the Legendre-sine current ex-

pansions in most calculations, and a comparison with

683
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Fig. 7. Effective dielectric constant versus normalized frequency.
(w/h =O.6, b/h= 20, s/h=4, N, =3, Nz = 1.)

I 10-tiB MICROSTRIP COUPLER
I

.41~
0 002 0.04 006 008 010 012 014

NORMALIZE FREQUENCY hko

Fig. 8. Effective dielectric constant versus normalized frequency
for the configuration of Fig. 1. (c, = 10, w/}z = 0.85, d,/h = 0.25,
b/h=20, s/h=4, NZ=5, Nz=l.)

N,= 3 and N%= 1 showed a change in the solution for Y2

of the order of 1 percent, while increasing N. to 2 with

N.= 5 showed a change of the order of 0.5 percent.

It should be noted that as Nz and N, are increased,

the solutions for 72 are generally confined to a very small

range, and that the difference between successive orders

of approximation decreases quite rapidly. From the ob-

served convergence behavior, it is believed that the ac-

curacy for the calculated values should be of the order

of + 1. percent.

In Fig. 8, the even- and odd-mode dispersion charac-

teristics of a 10-dB directional coupler in the conven-
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tional microstrip configuration are presented. As the

results show, the odd-mode effective dielectric constant

exhibits very little change, i.e., the change is only 1.9

percent at hko = 0.14, while the even-mode characteris-

tics show a change of 11.3 percent at hko = 0.14. The

more highly dispersive nature of the even mode can be

related to the increase in dispersion as w/h increases

since, for small separation, d2/h, the field distribution of

the two strips, will be approximately the same as a single

strip of width 2w+d.

If the frequency-dependent inductance and capaci-

tance of a line are defined from the TEM relations

L = ZO/Vp and C= l/ZOv,, the frequency-dependent ca-

pacitive and inductive coupling coefficients are then

given by

1 x!’’(w’
Zoe\eTe)——

()
1/2

(30)

I+;e :

1 1 zoo e., 1/2— ——
()

l–——
Zoovpo zOevpe = Zfk e,.

kc =
1 1

()

1/2
. (31)

—+— l+-z~~
zoo%. ZOovpe Zoe+3

Assuming for the moment that ZOO/ZO, is independent of

frequency, the behavior of e,, and e.o in Fig. 8 indicates

that kL increases while kc decreases with increasing fre-

quency. The quasi-TEM results of a previous paper [3]

indicated that, at zero frequency, the value of k~ is al-

ways greater than the value of kc for this configuration,

and since the directivity is proportional to kL — kc, the

directivity should become worse at higher frequencies.

It will be shown later that, at sufficiently high frequen-

cies, the ratio of Zti/ZO, decreases with increasing fre-

quency, so that the increase in kL will be greater than

the corresponding decrease in kc. The conclusion regard-

ing the degradation of directivity with increasing fre-

quency, however, will remain unchanged.

The preceding result further emphasizes the need for

compensated dielectric structures to achieve high direc-

tivity couplers in microstrip. In Figs. 9 through 12, the

dispersion characteristics of some compensated dielec-

tric structures are presented. The method of analysis for

these structures is essentially the same as the previous

analysis and therefore is not presented. In Fig. 9, the

even- and odd-mode dispersion characteristics are given

for a 10-dB overlay structure, i.e., for the configuration

of Fig. 2, In this case, the even- and odd-mode character-

istics exhibit substantially less dispersion than the pre-

vious case, and at hko = 0.14 the changes in the effective

84,
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Fig. 9. Effective dielectric constant versus normalized frequency
for the configuration of Fig. 2. (,,, = 10, e,, = 10, w/lz = 0.6, dJh
=0.2, b/h=20, s,/h=4, s,/h=O.15, N3=5, N,=l.)

‘ ,z~
0 002 004 006 008 010 012 014 016

NORMALIZED FREQUENCY hko

Fig. 10. Effective dielectric constant versus normalized frequenyc
for the configuration of Fig. 3. (,,1= 2.02, +2= 10, w/h= 0.65,
d,ih =0.045, b/h =20, sl/h = 0.1, sJh =0.9, S8/S2 =4, N,= 5,
NZ=l.)

dielectric constant from the zero-frequency values are

0.1 percent for the odd mode and 6.9 percent for the

even mode. It is easily seen that the thickness of the

overlay is too large to permit compensation [3] in the

range of frequencies considered, and compensation will

probably occur in the neighborhood of hko = 0.2 or

higher. Since both curves have asymptotes at ~’= 10,

there may exist a large range above the compensation

point for which e,. = c.O or kL = kc. The excitation of

higher order modes, however, may render this possibility

impractical.

In Figs. 10 through 12, the dispersion characteristics

of 6-dB, 10-dB, and 20-dB couplers utilizing the Teflon–

alumina dielectric structure in the configuration of Fig.

3 are presented. The changes in the effective dielectric

constants at hko = 0.14 for the 6-dB coupler of Fig. 10

are 0.4 percent for the odd mode and 9.2 percent for the

even one. It is noted that compensation in this case

occurs at a relatively low frequency of hko = 0.01. Due

to the relatively small changes in e,, and e,O in the vicin-

ity of hko = 0.01, a directional coupler with a midband

frequency of hko = 0.01 should behave essentially like a

TEM directional coupler and should exhibit very high

directivities over an octave bandwidth. However, if the

compensation point were changed to a higher frequency,
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Fig. 11. Effective dielectric constant versus normalized frequency
fortheconfiguration of Fig.3. (e,l=2.02, ~, =10, zu/h=0.88, dz/lr
=0.2’9, b/h=20, s,/h=O.ll, s,/h=0.89, s,~s, =4, N.=5, Nz=l.)

,oL~6
0

NORMALIZED FREQUENCY hko

Fig. 12. Effective dielectric constant versus normalized frequency
for the configuration of Fig. 3. (+,=2.02, c,, =1O, w/h=l.15,
d,/h==L34, b/h=20, sJh=O.14, sJh=O.86, sJs2=4, N,=5,
N.=1.)

say hk,l=O.l, the change in e,, would be much larger

than in the previous case considered, and the minimum

directivity would be much lower. Still, the directivity

for this configuration should be substantially higher

than fcjr the conventional microstrip configuration.

The dispersion characteristics for the 10-dB Teflon–

aIumina coupler are shown in Fig. 11. The changes in

the effective dielectric constants at hko = 0.14 are 1 per-

cent fcm- the odd mode and 10.8 percent for the even

mode, and again compensation occurs in the neighbor-

hood of hko = 0.01. It is noted that the dispersion for this

10-dB case is greater than for the 6-dB case, and that

the 10-dB Teflon-alumina curves exhibit more disper-

sion than the 10-dB overlay coupler, but less dispersion

than the conventional 10-dB coupler.

The even- and odd-mode dispersion characteristics

for a 20-dB Teflon-alumina coupler are presented in Fig,

12. Since the coupling is relatively weak, the coupled

lines should behave somewhat like two single lines. The

changes in the effective dielectric constants at hko = 0.14

are 3.1 percent for the odd mode and 12.9 percent for

the even mode. Note that e.. is greater than .s,Oat hko = O

so that compensation was not achieved. It is also noted

that the difference between the relative changes in e,.

and C,O at lzko = 0.14 are nearly the same for the 6-dB,

I — SINH

5 --- MAXWELL

—– LEGENDRE
t

4 —

3 —

2 —

I ==-
—--- --- —--

I I I I
0 02 0,4 0,6 0.8 10

OISTANCE 2x/w
/..

Fig. 13. Longitudinal current density versus distance for the con-
figuration of Fig. 1. (,, = 10, w/h= 1, s/h =4, b/h =20, N, =3,
Ns:=l, hkO=O.01.)

10-dB, and 20-dB couplers, However, the directivity is

proportional to (k~ – kc)/ (k~+kc) and, since (k. +kc)

is less for weaker coupling values, the corresponding

band-edge directivities in an octave bandwidth should

be worse for the weak coupling situations. Assuming

ZO./Zh does not change as a function of frequency, the

minimum directivities of the 6-, 10-, and 20-dB couplers

should be of the order of 41 dB, 30 dB, and 16 dB, re-

spectively, over an octave bandwidth centered about

hko = 0.08. (This would correspond to a 4- to 8-GHz

coupler when h = 0.025 in. ) If the compensation point

is shifted to a lower value of hko, the minimum directiv-

ity over an octave bandwidth can be substantially in-

creased. For a particular frequency range, the value of

hko can be reduced by using thinner substrates, but

power handling limitations, losses, and fabrication tech-

niques will, in general, place a lower limit on the sub-

strate thickness.

The impedance as a function of frequency and the

current distribution have been calculated for several

representative cases, and the results for single lines are

given in Figs. 13 through 15. The bulk of the impedance

calculations have been made using a slightly different

longitudinal current distribution approximation given

by

sinh 2mrx’/w
K-*(X) = co + ~ c. Sinh ~T –-

??= 1

for coupled strips and

Kg(z) = c, + ~ c.
cosh %TX/W

n=l cosh 2mr

for single strips. The reason for this choice of distribu-

tion is primarily aesthetic, and a comparison of the

solutions for the current distributions at hko = 0.01 using

Legendre polynomials and sinh functions are shown in

Fig. 13. Also shown is the Maxwell distribution used by
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Fig. 14. Characteristics of a single line for the configuration of Fig.
1. (a) Normalized current density versus distance. (b) Effective
dielectric constant and characteristic impedance versus normal-
~~ $quency. (c, = 10, w/h =0.5, s/h =4, b/h= 20, N. =3,

z.

Denlinger [5]. All the distributions are normalized such

that w–lJl”&Ks(x) d%= 1. It can be seen from these

curves that the polynomial distribution shows more

oscillation than the sinh distribution and that its mag-

nitude is not nearly as large at x = w/2. It is also ob-

served that the sinh distribution and the Maxwell dis-

tribution are quite similar. The sinh distribution, there-

fore, looks more like the expected distribution at low

frequencies, but in terms of the calculated values of ~

or 20 the choice of distribution makes little apparent

difference. The choice of the basis set for the longitudinal

current distribution, however, does affect the solution

for the transverse current distribution. It is found that

the magnitude of the maximum value of K. is somewhat

smaller when the sinh distribution is employed, and it is

believed that this result is related to the different shapes

of the K.(x) distributions near ~ = ~ w/4. In both cases

the magnitude of Kz is increasing as a function of fre-

quency and is at least two orders of magnitude less than

the average value of K.(x) at the highest frequency con-

sidered.

In Figs. 14 and 15 the longitudinal current distribu-

tions at hko = 0.01 and 0.13, and the frequency depen-

— hkO=OOl

--- hkO=O 13

/1

/
/

.—__. ——-— ——

DISTANCE 2x/w

(a)

7.3

-2
Y

7. I –

69 – — 49

6.7 — – 47

65
0 004 008 0.12 0,16 0.2

NORMALIZED FREQUENCY hko

(b)

c

Fig. 15. Characteristics of a single line for the configuration of
F,g. 1. (a) Normalized current density versus distance. (b) Ef-
fective dielectric constant and characteristic impedance versus
normalized frequency. (e, = 10, w/h= 1, sjh =4, bjh = 20, N,= 3,
Nc=i.)

dence of the characteristic impedance and the effective

dielectric constant are given for w/h values of 0.5 and 1.

In both cases, the characteristic impedance initially de-

creases and then increases with increasing frequency,

while the effective dielectric constant increases mono-

tonically with increasing frequency. The change in im-

pedance from lzko = 0.01 to hko = 0.19 is 4.6 percent for

w/h = 0.5 and 5.4 percent for w/h= 1, while the change

in effective dielectric constant is 8 percent for w/h= 0.5,

and 11.8 percent for w/h = 1. The impedance, therefore,

changes more slowly than the effective dielectric con-

stant as a function of frequency, The longitudinal cur-

rent distribution also changes slightly as a function of

frequency, and it appears that more current is concen-

trated at the edges of the strip at higher frequencies.

The current distribution curves for values of hko be-

tween 0.01 and 0.13 lie intermediate to the two curves

shown, while the curves for hko between 0.13 and 0.19

are virtually identical. It is also noted that distribution

curves at hko =0.01 are nearly identical for W/h Values

of 0.5 and 1.

The frequency dependence of the impedance has also

been considered by Denlinger [5] and Napoli and
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Fig. 16. Even-mode characteristics of apairof coupled lines. (a)
Normalize dcurren tdensit yversusdistance. (b) Effective dielec-
tric constant and characteristic impedance versus normalized
frequency. (c, =1O, w/h=l, d,/h=O.4, s/k=4, b/h=20, N.=3,
N==l, Fig. 1 configuration.)

Hughes [15], buttheir conclusions arenot in agreement

with the preceding results. On the basis of a quasi-TEM

model, Denlinger calculated a microstrip impedance

from the relation 20= Zo’~ereff/~, where ZO’ and ~,~ff

are calculated from the quasi-TEM theory. Since ~ in-

creases monotonically with frequency, this impedance

decreases monotonically with increasing frequency. This

value clf impedance, however, is no better than the

quasi-T EM value, since it does not relate the relative

magnitudes of the electric and magnetic fields or the

power to the current except at zero frequency. Napoli

and Hughes, on the other hand, have attempted to mea-

sure the microstrip impedance relative to a TEM refer-

ence line, and they conclude that the impedance de-

creases more rapidly than the effective dielectric con-

stant increases. Since the power and the longitudinal

current should be continuous across the interface be-

tween the TEM line and the microstrip line, the mea-

surements of Napoli and Hughes should be in agreement

with the power–current impedance calculations. How-

ever, an examination of their data reveals that they

have made various assumptions regarding the phases of

the reflected signals. When these assumptions are re-

moved, the data of Napoli and Hughes give a range of

-1,0 -0,6 -02 0 0,2 06 10

DISTANCE 2x/w

(a)

62, ,42 G

54~,4 ~
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(b)

Fig. 17. Odd-mode characteristics of a pair of coupled lines. (a)
Normalized current density versus distance. (b) Effective dielec-
tric constant and characteristic impedance versus normalized
frequency. (e, = 10, w/h= 1, d,/h = 0.4, s/h =4, b/h= 20, N. =3,
N,= 1, Fig. 1 configuration.)

possible impedance values, and the calculated values of

impedance then lie well within the predicted range. It

should also be noted in this regard that standing-wave

measurements in a TEM reference line of a l-in long

SO-Q (zero-frequency) microstrip line (alumina sub-

strate) terminated in a SO-Q load show that the VSWR

increases slowly with frequency, with a maximum

VSWf2 of 1.2 up to 15 GHz [16]. The maximum VSWR

for the impedance variation of Fig. 15(b), excluding mis-

match due to the connectors and the load, would be of

the order of 1.06. The impedance calculations, therefore,

are in good agreement with the experimental data.

The longitudinal current distribution, impedance, and

effective dielectric constant have also been calculated

for a pair of coupled lines, and the corresponding even-

and odd-mode characteristics are given in Figs. 16 and

17, respectively. The changes in the impedance and the

effective dielectric constant at hko = 0.12 from their

zero-frequency values are 5.8 percent and 11.3 percent

for the even mode and O percent and 1.7 percent for the

odd mode, respectively. The values of kL and kc are

kL=().29 and kc= O.20 at hkO=O.01, and kL=O.333 and

kc= 0,21 at hko=0.12, so that (kL–kc)/(kL+kc) equals

0.184 at hko = 0.01 and 0.226 at hko = 0.12, respectively.
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The corresponding directional couplers with midband

frequencies of hkO = 0.01 and 0.12 would then have mid-

band directivities of the order of 7 dB and 5.5 d B, re-

spectively. The current distribution for the even mode

is shown for two values of kko. As was found for the

single strip, the current tends to concentrate at the

outer edges of the strips at the higher frequencies. The

odd-mode current distributions in the frequency range

considered were all nearly identical, but in this case the

current shifted slightly to the inner edges of the strip.

IV. CONCLUSIONS

A method has been presented for determining the fre-

quency-dependent characteristics of the dominant mode

in microstrip transmission lines. The method can also be

extended to calculate the characteristics of higher order

modes, and was used to calculate the divergence or cut-

off frequencies of several modes. The bulk of the nu-

merical results were presented for microstrip enclosed in

a metal box, and the effects of the box size on the charac-

teristics of the line were examined, It was found that re-

ducing the topwall to ground-plane spacing increased

the dispersion as a function of frequency, while reducing

the spacing between the sidewalls reduced the disper-

sion. This sidewall effect was correlated to the virtual

lack of dispersion for the odd-mode characteristics of

coupled lines, while the increase in dispersion with in-

creasing stripwidth was related to the highly dispersive

characteristics of the even mode for coupled lines. The

even- and odd-mode effective dielectric constants were

calculated for several of the compensated structures,

and it was shown that the even- and odd-mode phase

velocities can be equalized for a particular frequency.

The minimum obtainable directivity over an octave

bandwidth was shown to decrease as the compensation

frequency increases.

The frequency dependence of the impedance for single

and coupled lines was also considered, and it was shown

that the percent change in impedance from its zero-fre-

quency value is in general less than the corresponding

percent change in the effective dielectric constant. Also

the results show that the impedance increases as a func-

tion of frequency.
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